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1. Introduction and discussion of results

Much has been learnt recently about the gauge theory – string theory duality by investi-

gating how the AdS/CFT correspondence [1] is realised when the N = 4 supersymmetric

gauge theory is deformed by exactly marginal operators [2 – 17]. Since the gauge theory

stays conformal it is expected to be dual (in the appropriate limit) to a supergravity so-

lution with Anti-de Sitter geometry. There are two points which make these marginal

deformations particularly interesting. First, is that these deformations give a continuous

family of theories parameterised by the deformation parameters βi. The AdS/CFT duality

provides a mapping between a gauge theory and a string theory for each value of βi. By

studying the β-dependence in gauge theory and in the dual supergravity (or string the-

ory) one thus gets a more detailed understanding of the AdS/CFT correspondence. The

second feature of marginal β-deformations is that they break (partially or completely) the

supersymmetry of the original N = 4 theory.

Lunin and Maldacena [2] have found a supergravity dual of the β-deformed N = 4

super Yang-Mills theory (β-SYM) which preserves N = 1 supersymmetry. In a recent

paper [15] two of the present authors have tested this supergravity solution and the resulting

string theory effective action against an instanton calculation on the gauge theory side. It

was found in [15] that the correct expression for the dilaton-axion supergravity field τ was

reproduced by instanton effects in gauge theory, and that the higher-derivative terms in

the string theory effective action included the appropriate modular forms fn(τ, τ̄ ) of this τ

as one would expect from the SL(2, Z) duality in IIB string theory.

One way of realising the solution generating method in [2] is via a combined T-duality-

shift-T-duality (TsT) transformation of the supergravity AdS5 × S5 geometry. This ap-

proach enabled Frolov [7] to extend the method and to find a three-parameter family of

non-supersymmetric supergravity solutions. This background has to be AdS/CFT dual

to a non-supersymmetric conformal gauge theory obtained by a certain three-parameter

deformation of the N = 4 SYM.
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In this paper we apply the instanton approach of refs. [18, 15] to investigate this non-

supersymmetric gauge theory and to test the supergravity solution of Ref. [7]. In section

2 we write down the supergravity solution of [7] parameterised by three real deformations

γi and specify the corresponding γi-deformed gauge theory. In section 3 we carry out

an instanton calculation in the γi-deformed gauge theory with a view to reconstruct the

dilaton-axion supergravity field τ from gauge theory. In the appropriate double-scaling

limit, γi ¿ 1, our result

τ = τ0 + 2Nπi
(
γ2

3 µ
2
1µ

2
2 + γ2

1 µ
2
2µ

2
3 + γ2

2 µ
2
3µ

2
1

)
(1.1)

reproduces the τ -field of Frolov’s supergravity dual. Here τ0 is the usual complexified

coupling constant in gauge theory, γi are the three deformation parameters, and µi are

coordinates on the deformed S5 sphere in supergravity. In section 4 we generalise our

set-up to include complex-valued deformations βi = γi + iσi. Our main results there are

eqs. (4.6)-(4.9).

The fact that instanton contributions in gauge theory confirm the non-supersymmetric

supergravity solution of Ref. [7] is our main result. Both expressions, in gauge theory and

in supergravity, are continuous functions of the three complex deformation parameters.

What is interesting about this matching is not merely the fact that there is a non-trivial

agreement between gauge theory and supergravity, but also that the Yang-Mills instanton

calculation which is intrinsically valid only at weak coupling, g2N ¿ 1, N → ∞, appears

to give the correct result in the strong coupling limit, g2N À 1, relevant for comparison

with the supergravity. This agreement between the strong and the weak coupling limits is

completely analogous to the previously known instanton tests of AdS/CFT correspondence

in the N = 4 SYM context in refs. [19 – 22, 18, 23, 24] and more recently in the context

of supersymmetry-preserving β-deformations in ref. [15]. In all known cases, leading order

contributions of Yang-Mills instantons calculated at g2N ¿ 1, match with contributions

of D-instantons in supergravity in the opposite limit g2N À 1. The agreement holds

only for the instanton part of the answer, it is known that perturbative contributions in

gauge theory and in string theory do not match. This suggests that there should exist a

non-renormalisation theorem which would apply to the instanton effects and explain the

agreement. We refer the reader to refs. [18, 25] and [15, 24] for a more detailed discussion

on this point.

In this paper we find that the agreement in the instanton sector persists in the non-

supersymmetric case. This implies that the non-renormalisation theorem is not dictated by

supersymmetry. We expect that the origin of the agreement lies in identifying Yang-Mills

instantons with D-instantons as the ‘extended’ objects or defects in both theories.

2. Three-parameter deformation of the AdS5× S5

We begin by reviewing the theories on each side of the gauge/string duality we wish to

study. The solution generating tool on the supergravity side is the combination of T-

dualities and coordinate shifts known as a TsT transformation. These allow one to start

with the known duality between IIB supergravity on a flat background and N = 4 SYM,

– 2 –
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and generate new supergravity backgrounds [2, 7]. The deformation on the gauge theory

side will be incorporated by introducing an appropriate star-product between fundamental

fields. For the most part we will concern ourselves with real valued deformations of the

theory. The issues which arise for complex deformations will be discussed in section 4.

2.1 Supergravity dual

In order to perform supergravity TsT transformations one must first identify suitable tori

in the initial geometry. In the case of [2] this torus was chosen to be the one dual to the

U(1)×U(1) global symmetry of β-SYM. If we parameterise this torus with angular variables

(ϕ1, ϕ2), then a TsT transformation with parameter γ̂ is the following: T-dualise in the

ϕ1 direction, perform the shift ϕ2 → ϕ2 + γ̂ϕ1, T-dualise again along ϕ1. The resulting

supergravity solution was shown in [2] to be dual to β-SYM for small, real β under the

association γ̂ = R2β where R is the radius of S5.

The S5 factor of AdS5×S5 can be parameterised with the coordinates µ1, µ2, µ3 with

0 ≤ µi ≤ 1 subject to µ2
1 + µ2

2 + µ2
3 = 1 and the angular coordinates φ1, φ2, φ3. There are

clearly three independent choices of torus corresponding to the pairs (φ1, φ2), (φ2, φ3) and

(φ1, φ2). The three parameter deformation constructed in ref. [7] follows by performing a

separate TsT transformation on each of these, with shift parameters γ̂3, γ̂1 and γ̂2 respec-

tively. The resulting type IIB supergravity background of Frolov written in string frame

with α′ = 1 takes the form [7]:

ds2
str = R2


ds2

AdS +
∑

i

(
dµ2

i + Gµ2
i dφ

2
i

)
+ Gµ2

1 µ
2
2 µ

2
3

(∑

i

γ̂i dφi

)2

 , (2.1)

G−1 = 1 + γ̂2
3 µ

2
1 µ

2
2 + γ̂2

1 µ
2
2 µ

2
3 + γ̂2

2 µ
2
3 µ

2
1 , e2φ = e2φ0 G ,

BNS = R2G
(
γ̂3 µ

2
1 µ

2
2 dφ1 ∧ dφ2 + γ̂1 µ

2
2 µ

2
3 dφ2 ∧ dφ3 + γ̂2 µ

2
3 µ

2
1 dφ3 ∧ dφ1

)

We present here only the fields that will be relevant for our purposes. The full complement,

including the RR forms C2 and C4 and self-dual five-form fields is given in [7]. To make con-

tact with the dual gauge theory we have the usual AdS/CFT relation R4 ≡ 4πeφ0N =
√
λ.

The real deformation parameters γ̂i appearing in (2.1) are related to the γi deformations

on the gauge theory side via a simple rescaling, γ̂i = R2γi. We note that the dilaton field

φ in (2.1) is not simply a constant, but depends on the coordinates of the deformed sphere

S̃5. (The axion field C = C0 is a constant for real-valued deformations γi.)

When all three deformation parameters are equal, γ̂1 = γ̂2 = γ̂3 ≡ γ̂, this solution

reverts to that of Lunin and Maldacena [2], and the dual gauge theory is β-SYM.

2.2 Gauge theory formulation

The Frolov’s supergravity solution (2.1) with three real deformations γi contains the AdS5

factor. Thus it is expected to be dual to a conformal gauge theory obtained by exactly

marginal but non-supersymmetric deformations of the N = 4 SYM. More precisely, the

gauge theory should be conformal in the large number of colours limit (which we always

assume in this paper) where the supergravity approximation to string theory can be trusted.
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Φ1 Φ2 Φ3 Aµ λ1 λ2 λ3 λ4

Q1 1 0 0 0 +1
2 −1

2 −1
2 +1

2

Q2 0 1 0 0 −1
2 +1

2 −1
2 +1

2

Q3 0 0 1 0 −1
2 −1

2 +1
2 +1

2

Table 1: Charges Qi of the component fields in the theory under the Cartan subgroup of the

SU(4)R.

We will be considering non-supersymmetric deformations of the N = 4 gauge theory,

parameterised by three phases, eiπγ1 , eiπγ2 and eiπγ3 , with real parameters γi. To ensure

conformal invariance of the theory in the large N limit, it is convenient to introduce these

phase-deformations via a star-product approach.1 We take the component Lagrangian

of the N = 4 supersymmetric Yang-Mills and modify all products of fields there into

star-products. For any pair of fields f and g, the star-product which gives rise to our

deformations is [10]:

f ∗ g ≡ e−iπ Q
f
i Q

g
j εijkγk fg (2.2)

Here Qfi and Qgi are the charges of the fields f and g under the i = 1, 2, 3 Cartan generators

of the SU(4)R R-symmetry of the original N = 4 SYM. The values of these charges for all

component fields are the same as in [9] and are given in the table 1. These values are easy

to derive from the fact that the integral of the superpotential of the N = 4 SYM
∫
d2θWN=4 =

∫
d2θ iTr(Φ1Φ2Φ3 − Φ1Φ3Φ2) (2.3)

is invariant under the action of each of these Cartan generators on the superfields Φi

Φ1 → eiφ1 Φ1 , Φ2 → eiφ2 Φ2 , Φ3 → eiφ3 Φ3 (2.4)

This implies that the Grassmann N = 1 superspace coordinate θα is charged under these

transformations with Qθ = (1
2 ,

1
2 ,

1
2 ). The charges of the scalar fields Φi are precisely the

same as of their parent superfields Φi in (2.4) and the charges of the fermions λA in the

table 1 are read from eq. (2.4) keeping in mind Φi(x, θ) = Φi(x)+θ ·λi(x)+ · · · . The gauge

field Aµ is neutral.2

The Lagrangian of the deformed theory follows from the component Lagrangian of the

N = 4 SYM and the star-product definition (2.2). We have:

L =
1

g2
Tr

(
1

4
F µνFµν + (DµΦ̄i)(DµΦi)−

1

2
[Φi,Φj]Cij [Φ̄

i, Φ̄j ]Cij +
1

4
[Φi, Φ̄

i][Φj, Φ̄
j ]

1Below we will use the fact [26] that associative star-products do not change planar diagrams of the

original N = 4 SYM. This means that in the large N limit the resulting deformed gauge theory will remain

conformal at least in perturbation theory.
2The fourth fermion λ4 is the N = 1 superpartner of Aµ. It’s charge is read off the invariance of the

gauge kinetic term,
R
d2θWW , where Wα = λ4α + · · · is the usual field-strength chiral superfield.
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+λAσ
µDµλ̄

A − i[λ4, λi]B4iΦ̄
i + i[λ̄4, λ̄i]B4iΦi +

i

2
εijk[λi, λj ]BijΦk +

i

2
εijk[λ̄

i, λ̄j ]Bij Φ̄
k

)

(2.5)

This Lagrangian contains only ordinary products between the fields; all modifications due

to the star-product (2.2) are assembled in (2.5) into the deformed commutators of scalars

Φi, Φ̄i and fermions λA, λ̄
A. These deformed commutators are

[Φi,Φj]Cij := eiCij ΦiΦj − e−iCij ΦjΦi , i, j = 1, 2, 3 (2.6)

[λA, λB ]BAB := eiBAB λAλB − e−iBAB λBλA , A,B = 1, . . . , 4 (2.7)

Deformed commutators for Φ̄ and λ̄ fields defined in the same way as in (2.6)-(2.7), and

we note that the commutator [Φi, Φ̄
i] in (2.5) is undeformed. The matrices C and B are

the same as in ref. [9], they read

C = π




0 −γ3 γ2

γ3 0 −γ1

−γ2 γ1 0


 , B = π




0 −1
2(γ1 + γ2) 1

2(γ3 + γ1) 1
2(γ2 − γ3)

1
2(γ1 + γ2) 0 −1

2(γ2 + γ3) 1
2(γ3 − γ1)

−1
2(γ3 + γ1) 1

2(γ2 + γ3) 0 1
2(γ1 − γ2)

−1
2(γ2 − γ3) −1

2(γ3 − γ1) −1
2(γ1 − γ2) 0




(2.8)

We see that the whole effect of the 3-parameter deformation is contained in these matrices

which introduce the appropriate phases into the 4-scalar and the Yukawa interactions of

the deformed theory (2.5). It is important to note that the induced phases of the fermions

(determined by the matrix B) are different from those of the scalars (in C). Also the

ranks of B and C are different, the matrix B introduces phases to the Yukawa interactions

involving all the fermions, including the gaugino λ4. The Lagrangian (2.5) incorporates

correctly the four-scalar interactions written down in [7, 10]. In addition to these, eqs. (2.5),

(2.8) give the precise form of the interactions with fermions which are required for the

instanton calculations in the present paper.

For a special case of all γi being equal, the matrices B and C coincide with each other

giving the same phase factors for scalars and fermions. In this case, the gauge theory is

N = 1 supersymmetric and is dual to the supergravity solution of Lunin and Maldacena [2].

In the general case of unequal deformations γi, the fermion and scalar phases differ and

the gauge theory is non-supersymmetric.

Finally, we need to make sure that the deformed gauge theory defined by eqs. (2.5),

(2.8) is exactly marginal in the large N limit. In general, this would be a non-trivial

task since the theory is not supersymmetric and one cannot use the approach of Leigh

and Strassler [3] to establish the required conformal invariance. Instead the marginality

of the theory follows from the use of the star-product. It is known [26] that the Moyal

star-products used in the formulation of the noncommutative field theory do not affect the

large N perturbation theory. More precisely, the planar diagrams of the theories with and

without the star-products can differ only by an overall phase-factor which depends only

on the external lines. This argument essentially uses only the associativity property of the

star-product and it also applies to our choice (2.2), see section 3.2 of ref. [27] for more

– 5 –
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detail. This implies that all planar perturbative contributions to the beta-functions and

anomalous dimensions in our deformed theory are proportional to those in the conformal

N = 4 theory, and hence vanish. Thus, the deformed theory (2.5), (2.8) is conformal in

the large N perturbation theory.

The deformed theory (2.5), (2.8) is an interesting field theory on its own right. It is

a non-supersymmetric theory which fully inherits the remarkable structure of the large N

perturbation theory of the superconformal N = 4 SYM. In ref. [28] it was argued that

in the N = 4 SYM the Maximally-Helicity-Violating (MHV) n-point amplitudes have an

iterative structure, such that the kinematic dependence of all higher-loop MHV amplitudes

can be determined from the known one-loop results. It then follows [27] that the same must

be true for the planar MHV amplitudes of the deformed theory. This is a consequence of

the fact that the deformations were introduced via the star-product of the type (2.2). It

is remarkable that such an iterative structure of the multi-loop amplitudes can hold in a

non-supersymmetric theory.

3. Instanton effects

Instantons in the deformed N = 4 gauge theory have been discussed in detail in ref. [15].

We refer the reader to this reference and summarise here only the key points. The instanton

configuration is defined to the leading order in the Yang-Mills coupling g, and satisfies the

following equations for the gauge field,

Fmn = ∗Fmn (3.1)

fermions,

/̄Dα̇αλAα = 0 (3.2)

and scalars,

D2ΦAB =
√

2 i ( eiBABλAλB − e−iBABλBλA ) (3.3)

Here /̄Dα̇α = Dµσ̄α̇αµ and D2 = DµDµ where Dµ is the covariant derivative in the instanton

background Aµ. The matrix B is given in (2.8).

There are 8kN fermionic solutions of (3.2) in the k-instanton background. 16 of these

solutions correspond to 2N = 8 supersymmetric and 2N = 8 superconformal fermion zero

modes of the original N = 4 gauge theory. In the N = 4 SYM these 16 fermion zero modes

are exact. In our deformed theory supersymmetry is lost and all of the fermion zero modes

are lifted in the instanton action as will be seen shortly.

The scalar field equation (3.3) follows from the Yukawa interactions3 in (2.5) and is

written in the basis ΦAB = −ΦBA for the scalar fields. This representation is related as

follows to the usual basis Φi used in (2.5) (see [15])

Φ1 =
1√
2

(φ1 + iφ2) = 2 Φ̄23 = 2 Φ14

3The four-scalar interactions in (2.5) do not enter the leading order in g instanton construction.

– 6 –
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Φ2 =
1√
2

(φ3 + iφ4) = 2 Φ̄31 = 2 Φ24 (3.4)

Φ3 =
1√
2

(φ5 + iφ6) = 2 Φ̄12 = 2 Φ34

The instanton configuration is the solution of the defining equations (3.1)-(3.3), and it is

used to construct the semi-classical instanton integration measure. This measure is an

integral over the instanton collective coordinates and it determines instanton contributions

to the path integral. The general multi-instanton measure was constructed in [18] for

the N = 4 SYM and generalised in [15] to account for the supersymmetry preserving

β-deformations. The result of [15] can be now straightforwardly adopted to the case of

non-supersymmetric γi deformations. We will concentrate here on the simplest case of the

single-instanton measure. The multi-instanton measure is a straightforward generalisation

of thereof along the lines of [15, 18].

The 1-instanton measure of the γi-deformed theory reads (cf. eq. (5.2) of ref. [15]):

∫
dµ e−S1−inst =

2−31π−4N−5g4N

(N − 1)!(N − 2)!

∫
d4x0 dρ d

6χ

4∏

A=1

d2ξA d2η̄A d(N−2)νA d(N−2)ν̄A

ρ4N−7exp

[
−8π2

g2
+iθ−2ρ2χaχa +

4πi

g
χABΛAB

]

(3.5)

The integral above is over the bosonic and fermionic (Grassmann) collective coordinates of

the instanton. The fermionic ones comprise 4(N−2) parameters νAi (where i = 1, . . . N−2),

8 supersymmetric coordinates ξAα and 8 superconformal modes η̄Aα̇ (where α = 1, 2 and

α̇ = 1, 2). Bosonic collective coordinates include the instanton position xµ0 , the scale-size ρ

and the 6 additional variables χa which are coupled to fermion modes in the instanton action

in the exponent in (3.5). The variables χa or χAB transform in the vector representation of

the SO(6) ∼= SU(4) R-symmetry and is subject to the reality condition χ†AB = 1
2εABCDχCD.

Finally ΛAB in the instanton action in (3.5) is a fermionic bilinear defined as

ΛAB =
1

2
√

2

N−2∑

i=1

(
eiBAB ν̄Ai ν

B
i − e−iBAB ν̄Bi νAi

)
+ i8
√

2 sin(BAB)
(
ρ2η̄A · η̄B + ξA · ξB

)

(3.6)

The 4 × 4 antisymmetric matrix BAB was defined in (2.8). The fact that the instanton

action in (3.5) depends on all of the fermionic collective coordinates (through ΛAB) implies

that they are lifted. This is to be expected in the non-supersymmetric theory.

Following the approach of [15] we proceed by integrating out fermionic collective

coordinates νAi and ν̄Ai from the instanton partition function (3.5). For each value of

i = 1, . . . , N − 2 this integration gives a factor of

(
4π

g

1√
2

)4

det4

(
eiBAB χAB

)
(3.7)

The determinant above can be calculated directly. It will be useful to express the result

in terms of the three complex variables Xi which are defined in terms of χAB in the way

– 7 –
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analogous to eqs. (3.4):

X1 = χ1 + iχ2 = 2
√

2χ†23 = 2
√

2χ14

X2 = χ3 + iχ4 = 2
√

2χ†31 = 2
√

2χ24 (3.8)

X3 = χ5 + iχ6 = 2
√

2χ†12 = 2
√

2χ34

In terms of these degrees of freedom, the determinant takes the form

det4

(
eiBAB χAB

)
=

∣∣∣∣∣∣∣∣∣∣∣

0 X†3 e
− iπ2 (γ1+γ2) −X†2 e

iπ
2 (γ3+γ1) X1 e

iπ
2 (γ2−γ3)

−X†3 e
iπ
2 (γ1+γ2) 0 X†1 e

− iπ2 (γ2+γ3) X2 e
iπ
2 (γ3−γ1)

X†2 e
− iπ2 (γ3+γ1) −X†1 e

iπ
2 (γ2+γ3) 0 X3 e

iπ
2 (γ1−γ2)

−X1 e
− iπ2 (γ2−γ3) −X2 e

− iπ2 (γ3−γ1) −X3 e
− iπ2 (γ1−γ2) 0

∣∣∣∣∣∣∣∣∣∣∣
(3.9)

It is evaluated to give

det4

(
eiBAB χAB

)
=

1

64
(|X1|2 + |X2|2 + |X3|2)2 (3.10)

− 1

16
sin2(πγ3) |X1|2|X2|2 −

1

16
sin2(πγ1) |X2|2|X3|2

− 1

16
sin2(πγ2) |X3|2|X1|2

We note that the expression above depends only on the three absolute values of |X| and is

independent of the three angles. We can further change variables as follows:

|Xi| = r µi ,

3∑

i=1

µ2
i = 1 (3.11)

and write
(

4π

g

1√
2

)4

det4

(
eiBAB χAB

)
=

(
π

g

)4

r4
(

1 − 4 sin2(πγ3)µ2
1µ

2
2 (3.12)

− 4 sin2(πγ1)µ2
2µ

2
3 − 4 sin2(πγ2)µ2

3µ
2
1

)

In summary after integrating out all of the ν and ν̄ fermionic collective coordinates we

find the following generic instanton factor in the measure:

Finst := e
− 8π2

g2
+iθ (

1 − 4 sin2(πγ3)µ2
1µ

2
2 − 4 sin2(πγ1)µ2

2µ
2
3 − 4 sin2(πγ2)µ2

3µ
2
1

)N−2

≡ e2πiτ0 (1 − Q(µi, γi))
N−2 (3.13)

This factor is integrated over the AdS5 × S5 space spanned by xµ0 , ρ and the five angles of

χa ∫
d4x0

dρ

ρ5
d5χ̂ = (2π)3

∫
d4x0

dρ

ρ5
dµ1 dµ2 dµ3 δ(µ

2
1 + µ2

2 + µ2
3 − 1) (3.14)

exactly as in [15, 18]. As we are interested in the limit N → ∞ we can rewrite eq. (3.13)

as a total exponent and evaluate the integrals over µi via a saddle-point approximation,
∫

µi

e2πiτ0 (1 − Q(µi))
N−2 =

∫

µi

exp
(

2πiτ0 + (N − 2) log
(
1 − Q(µi)

))
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≈ exp
(
2πiτ0 − N Q(µi|saddle)

)
(3.15)

This method selects the dominant value of the function Q(µi) to be Q(µi|saddle) ∼ 1
N and

has therefore allowed us to expand the log to leading power in Q in the last line.

What we have calculated so far is a large-N expression for the characteristic instanton

factor

Finst = exp
(
2πiτ0 − N Q(µi|saddle, γi)

)
(3.16)

This factor arises in an instanton calculation of a generic correlation function in gauge

theory. When applied to the calculation of Yang-Mills correlators involving operators

which are dual to the supergravity fields, the instanton result in gauge theory must match

with the corresponding D-instanton contribution in string theory. This means that the

characteristic factor (3.16) due to the Yang-Mills instanton must correspond to exp
(
2πiτ

)
,

where τ is the dilaton-axion field in dual string theory.4 By matching exponents we read

off the instanton prediction for the dilaton-axion field:

τ = τ0 −
N

2πi

(
4 sin2(πγ3)µ2

1µ
2
2 + 4 sin2(πγ1)µ2

2µ
2
3 + 4 sin2(πγ2)µ2

3µ
2
1

)
(3.17)

We note that this semi-classical field theory result is valid for any value of the parameters

γi and, as such, can be interpreted [16] as a (weak-coupling) prediction for the τ field in

the exact string theory background.

The supergravity regime is reached in the limit of γi ¿ 1 which gives:

τ → τ0 + 2Nπi
(
γ2

3 µ
2
1µ

2
2 + γ2

1 µ
2
2µ

2
3 + γ2

2 µ
2
3µ

2
1

)
(3.18)

This precisely matches with the Frolov’s three parameter supergravity solution (2.1) for

the dilaton-axion field:

τ = ie−φ + C (3.19)

= ie−φ0

(
1 + γ̂2

3 µ
2
1µ

2
2 + γ̂2

1 µ
2
2µ

2
3 + γ̂2

2 µ
2
3µ

2
1

)1/2
+C0 (3.20)

= τ0 +
ie−φ0

2

(
γ̂2

3 µ
2
1µ

2
2 + γ̂2

1 µ
2
2µ

2
3 + γ̂2

2 µ
2
3µ

2
1

)

where the deformation parameters are γ̂2
i = N g2 γ2

i and one identifies the coordinates on

the deformed supergravity S̃5 sphere with the χ-collective coordinates of the instanton.

It is clear in the above that an analogous calculation for the case of one anti -instanton

would yield the same type of gauge/supergravity matching for the conjugate parameter τ̄ .

One can also extend this calculation to include the multi-instanton sectors, as in [15, 18].

In the large N limit the partition function in the k-instanton sector is:

∫
dµkinst e

−Skinst =

√
Ng2

233π27/2

k

g2

−7/2∑

d|k

1

d2

∫
d4x dρ

ρ5
d5Ω̂

∏

A=1,2,3,4

d2ξAd2η̄Ae2πikτ (3.21)

where τ is given by the same eq. (3.17).

4More detail about instanton and D-instanton contributions to the string effective action can be found

in [15, 18 – 20].
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4. Complex β deformations

In this section we consider the more general case of marginal deformations with complex

values of the deformation parameters βi ∈ lC

β1 = γ1 + i σ1 , β2 = γ2 + i σ2 , β3 = γ3 + i σ3 (4.1)

The supergravity solution corresponding to this case was obtained in [7] by performing

three consecutive STsTS−1 transformations (where S is the S-duality) acting on the three

natural tori of S5. This family of solutions is expected to be dual to a deformed Yang-Mills

theory with three complex deformation parameters.

We will first explain how to extend the instanton calculation on the gauge theory side

from real to complex βi-deformations. We will carry out this calculation for arbitrary

(not necessarily small) values of the deformation parameter βi ∈ lC. The main result of

this section is the instanton prediction for the dilaton-axion field τ . We will show that

in the limit of small βi it will match precisely with the τ field of Frolov’s supergravity

dual [7]. As before, the small-βi limit is required to ensure the validity of the supergravity

approximation to full string theory.

We now need to specify the deformed gauge theory. The absence of supersymmetry

and the complex-valuedness of the deformations βi make it difficult. It is not entirely clear

how to uniquely define this theory and, more importantly, how to guarantee its marginality

in the large N -limit.5 Fortunately, the instanton calculation which we are about to present

does not require the full knowledge of the gauge-theory Lagrangian, beyond its gauge and

Yukawa interactions specified below.

The instanton configuration at the leading order in weak coupling is defined as in

equations (3.2)-(3.3) with the scalar field equation (3.3) taking the form:

D2ΦAB = h
g

√
2 i ( eiπBAB λAλB − e−iπBAB λBλA ) , (4.2)

Here BAB is a complex-valued matrix obtained from the one in (2.8) by the substitution

γi → βi. The factor of h/g on the right hand side of (4.2) accounts for the change of the

coupling constant from g to h in the Yukawa couplings, where h is an new complex param-

eter. We note that the resulting instanton configuration depends on h holomorphically.6

Following the approach of section 3 we integrate out fermionic collective coordinates νAi
and ν̄Ai . For each value of i = 1, . . . , N−2 this integration gives a factor of the determinant

(3.7) times an appropriate rescaling by h/g. We find

(
1

g

)4

det4

(
eiπBAB χAB

)
−→

(
1

g

)4 (h
g

)2

det4

(
eiπBAB χAB

)
. (4.3)

5The absence of supersymmetry prevents one from using the Leigh-Strassler approach [3] in terms of

conformal constraints, while the complex-valuedness of the deformation parameters makes it difficult to use

the star-product formulation.
6At leading order in g the dependence on h∗ can come only through the equation conjugate to (4.2),

which involves anti-fermion zero modes λ̄ on the right hand side. These are vanishing in the instanton

background. It is clear then that the anti-instanton configuration, will depend on h∗ and not on h.
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After evaluating this determinant, the result for the characteristic instanton factor in the

large-N limit is:

Finst = exp

[
2πiτ0 + 2N log

(
h

g

)
+ N log (1 − Q(µi, βi))

]
, (4.4)

where Q(µi, βi) is the same function as before, but with the complex βi parameters in place

of real γi,

Q(µi, βi) = 4
(
sin2(πβ3)µ2

1µ
2
2 + sin2(πβ1)µ2

2µ
2
3 + sin2(πβ2)µ2

3µ
2
1

)
(4.5)

By taking the small deformation limit, |βi|2 ¿ 1, appropriate for comparison with the

supergravity solution, we find

Finst = exp
[
2πiτr − 4π2 N ((γ2

1 − σ2
1 + 2iγ1σ1)µ2

2µ
2
3 + (γ2

2 − σ2
2 + 2iγ2σ2)µ2

1µ
2
3

+(γ2
3 − σ2

3 + 2iγ3σ3)µ2
2µ

2
1)
]
, (4.6)

Here τr is the constant which has the meaning of the ‘renormalised’ Yang-Mills coupling

as in section 8 of [15] and in [6]. It is defined via

τr := τ0 −
iN

π
log

h

g
(4.7)

The dilaton and axion field components of the Frolov’s supergravity dual with three

complex deformations are given by [7]:

eφ = eφ0 G1/2H , C = C0 + e−φ0 H−1Q , (4.8)

where the expressions for the functions G, H and Q can be found in the Appendix B of [7].

By employing these expressions and (4.8) one can easily calculate the axion-dilaton field

for the case of complex deformations. The result thus obtained reads

e2πiτ = e2πi(ie−φ+C)

= exp
[
− 2πe−φ0 [1 + 1

2(γ̂2
1 − σ̂2

1)µ2
2µ

2
3 + 1

2(γ̂2
2 − σ̂2

2)µ2
1µ

2
3 + 1

2(γ̂2
3 − σ̂2

3)µ2
2µ

2
1]

+ 2πi(C0 + e−φ0(γ̂1σ̂1µ
2
2µ

2
3 + γ̂2σ̂2µ

2
1µ

2
3 + γ̂3σ̂3µ

2
2µ

2
1))
]

(4.9)

By making the identification

γ̂i = gr
√
Nγi , σ̂i = −gr

√
Nσi , τr = ie−φ0 + C0 (4.10)

one can immediately see this supergravity result is in perfect agreement with our field

theory prediction (4.6).
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